Traveling waves and the renormalization group improved Balitsky–Kovchegov equation
نویسنده
چکیده
I study the incorporation of renormalization group (RG) improved BFKL kernels in the Balitsky–Kovchegov (BK) equation which describes parton saturation. The RG improvement takes into account important parts of the next-to-leading and higher order logarithmic corrections to the kernel. The traveling wave front method for analyzing the BK equation is generalized to deal with RG-resummed kernels, restricting to the interesting case of fixed QCD coupling. The results show that the higher order corrections suppress the rapid increase of the saturation scale with increasing rapidity. I also perform a “diffusive” differential equation approximation, which illustrates that some important qualitative properties of the kernel change when including RG corrections.
منابع مشابه
QCD traveling waves beyond leading logarithms
We derive the asymptotic traveling-wave solutions of the nonlinear 1-dimensional BalitskyKovchegov QCD equation for rapidity evolution in momentum-space, with 1-loop running coupling constant and equipped with the Balitsky-Kovchegov-Kuraev-Lipatov kernel at next-to-leading logarithmic accuracy, conveniently regularized by different resummation schemes. Traveling waves allow to define “universal...
متن کاملSolution to the Balitsky-Kovchegov equation in the saturation domain
The solution to the Balitsky-Kovchegov equation is found in the deep saturation domain. The controversy between different approaches regarding the asymptotic behaviour of the scattering amplitude is solved. It is shown that the dipole amplitude behaves as 1− exp (−z + ln z) with z = ln(rQs) (r -size of the dipole, Qs is the saturation scale) in the deep saturation region. This solution is devel...
متن کاملBK Equation and Traveling Wave Solutions
It has been shown that the transition to the saturation regime of high energy QCD is similar to the formation of the front of a traveling wave. In particular, it can be verified that Balitsky-Kovchegov (BK) evolution equation reduces, after some approximations, to the nonlinear Fisher and Kolmogorov-Petrovsky-Piscounov (FKPP) equation, well-known from statistical physics. In these proceedings, ...
متن کاملOn solutions of the Balitsky - Kovchegov equation with impact parameter
We numerically analyze the Balitsky-Kovchegov equation with the full dependence on impact parameter b. We show that due to a particular b-dependence of the initial condition the amplitude decreases for large dipole sizes r. Thus the region of saturation has a finite extension in the dipole size r, and its width increases with rapidity. We also calculate the b-dependent saturation scale and disc...
متن کاملImpact Parameter Dependence in the Balitsky-Kovchegov Equation
We study the impact parameter dependence of solutions to the Balitsky-Kovchegov (BK) equation. We argue that if the kernel of the BK integral equation is regulated to cutoff infrared singularities, then it can be approximated by an equation without diffusion in impact parameter. For some purposes, when momentum scales large compared to ΛQCD are probed, the kernel may be approximated as massless...
متن کامل